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1. INTRODUCTIOIN

This paper is concerned with a class of linear predictor-corrector

digital filters of the third order with three parameters. This class

includes the four digital filters that have been or are being used at

White Sands Missile Range (WSMR) of the United States Army. Two of them,

namely the McCool's QD filter [3] and Shepherd's third order parabolic

*spline filter (4], were devised at WSMR for missile trajectory smoothing,

reconstruction and differentiation. All of them have applications in

real time radar tracking digital servomechanisms. The theory for this

paper was developed largely from internal notes of WSMR by Chui [1] and

Shepherd [4] although some laborious detail in [I] and [4] is not given

here. The class of linear predictor-corrector digital filters to be

discussed here can be defined as in the following. Set

w = [w, w2 , w3 T (1.1)

Here, and throughout, the superscript T indicates the transpose of a

matrix. Hence, w in (1.1) is a three-dimensional constant colun

vector. If {xi1, i - 0, 1, ..., denotes an input signal, h a

positive constant, and the sequence of three-dimensional vectors

Y-i - [Yi. Y!' y"lT 0.2)

i = 0, 1, ... , denotes the output response corresponding to the input

signal {x i and subject to the initial condition 1_1 [ l' Y' Y"J

then the class of digital filters we consider is defined by



yp+l u p ph + h) + (x -~ u p(ph + h))v 13

for p -1, 0, 1, ... , where

u (t) =y + y'(t - ph) +1 "( ph )2, and(.)

-p p p p

The real-valued function u Mt and the vector-valued function u Mt
p -

are both called predictor functions. Also, u (ph + h) is called the
-p

prediction at the time t ph + h based on the output response Y While

(X l - u p(ph + h))w is called the correction at the time t = ph + 1h.

With ~as/h, ~h I this filter appears as the general U41Sy ile

(cf. Steelman [5] and the references therein).

It is easy to verify that the filter (1.3), (1.4) is equivalent to

the filter

+-+ 1 ~p+lz (1.5)

p -1, 0, 1, ... , where A is the 3 x 3 matrix.

1 - w (I-v 1 )h 1(1 w)2

1 2

22 2-3 2

lw-w hh 2

V3 2 i3(16

This matrix formulation exhibits the filter as a third order linear

difference equation. With Input ix Iwhere xi ori<00io I<0

output {yi), i- 0, 1, ... , and initial value y1 the general

* solution can be shown by induction to be

A + _- P~ o!+Axm + . . +Ax w+ x+ !- 17

1P~l 2



If the response due to arbitrary initial value is to damp out, it

is apparent from (1.7) that

limAnx = 0 for all x in it 3.

The relationship between this observation and the stability of the filter

(1.5), (1.6) is developed in section 2. More precisely, we will show that

if all the eigenvalues AIx A of the matrix A lie in the open
1,2' 3

unit disc Izi < 1, then the digital filter (1.3) - (1.4), or equivalently

(1.5) - (1.6), is stable. Furthermore, the condition [x < 1, for

j = 1, 2, 3, is satisfied if and only if the condition (1.8) is s4tisfied.

We will study this eigenvalue problem via z-transforms. This technique

will be extended to "uncouple" the system (1.3) - (1.4) solving for each

of the output response sequences ly p, 1y'), and {y"} in terms of the

input signal {x } and the initial conditions y 1_, and Y"

respectively in recursive forms. These three recursive formulas will allow

the studying of each of the three output- response sequences {y p}, {y'),

and {y"I individually without referring to the other two. In particular,
p

design criteria can be formulated.

In section 3, we will consider the special case of Shepherd's

"parabolic spline predictor corrector filter", which is obtained from

(1.5) and (1.6) by setting

where 6 is considered as a design parameter.

4i
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In section 4 we consider somewhat more briefly McCool's "QD" filter

[3], for which (with w = [a, B/h, y/h 2] )

[aBf=6°M 2 2a = y 2a ,
[ 0 M3 + 3 3  + 23M 3- 6 MM

Morrison's "fading memory polynomial filter of degree 2" [5], for which

3- 3 (1-0) 2 3[a,a,y] = -0 (1+0), (1-0) ],

and an a - 8 filter (for which one can set w = 0 and y", 0 in

the beginning) studied by Gonzales in 1968 (cf. [21).

2. STABILITY AND UNCOUPLING OF THE FILTERS

We will use the technique of z-transforms to study the class of

digital filters defined by (1.3) - (1.4), or equivalently (1.5) - (1.6).

If {bi} is a bi-infinite sequence of complex numbers, then the z-transform

of the sequence {b } j = ... , -1, 0, 1, ... , is the formal Laurent

series

B(z) bz

Let {x p}, (y p, {y;} and {y;} be defined as in section 1. We will

set xp = 0 if p < O, and yp = y; y" - 0 if p < -1. Hence, the

z-transforms of these sequences are given by

00

X=X(z) = I xz--P
pMO P

Y1 = Y 1 (z )  - y_ pz-p

pO 1LyF

Y2= Y 2 Wz - I "-

Y3 = Y3 (z) = y YVz - P

p -



respectively. If we re-write the matrix system (1.5) in the form of a

system of three simultaneous difference equations and take the z-transforms

of each of these three equations, we obtain the following system of

simultaneous linear algebraic equations

(z-+W )Y1  (h-hw )Y - (1 h2 _ 1 h 2  )y w zX
12 2 2 13 1

w2 Y1 + (z-l+ hw2 )Y2 - (h--lh2 w2 )Y 3 = w2 zX
12

3 1 3 2 2 32w 3 Y1 + hw 3Y 2 + (z -l1+-P w3)Y3 = w3zX .(2.1)

In matrix representation, (2.1) can be written as

(A- zI 3 )[Y 1 , Y2 2F 3 -zXw (2.2)

where 13 is the 3 x 3 identity matrix. Let HI(z), H2 (z), and H3(z)

be the transfer functions of this digital filter; that is,

Yji(z) - H iz)XWz (2.3)

for j 1, 2, 3. Then HI(z), H2 (z), and H3 (z) can be obtained by

solving the linear system (2.2) using Cramer's rule. Hence, they are
-l

rational functions in z with the same denominator det( A - z13 ). This

shows that if det(A - zI3) 0 for all z with Iz < I or jzj > I,

or equivalently all the eigenvalues of A lie inside the unit circle Izi =fI.,

then the filter (1.3) - (1.4) is stable. Let X1 , ' 2, X3 be the (not

necessarily distinct) eigenvalues of A and let XlI ',2 x3 be three

corresponding linearly independent eigenvectors. Then for any x (R 3 ,

Sal + C2-2 + a3x3  for some constants alt O2, and a 3. Hence, for

any positive integer n, we have



1 c 1 41 + a2124x2  V3

This shows thtif 1AI< 1 for j =1, 2, 3, then A x +0 as n - .

n 3
Conversely, if A n 2- ., 0 for all x EIR 3, we can pick x (j =1, 2, 3)

[toj yield XIA.e.0 sn Sne .00 e thv
toj- yilj..=Ax -~ sn-_.Snex.yj ,w uthv

1A3 c1.That is, we have established the following

THEOREM 2.1. Let Ali A 2 , A3 be the eiptenvailues of the matrix A Kiver-

in (1.6).and A -max(1A 1 ,1 2 ,A 3 ) Then the digital filter (1.3)-

A < 1 holds if and only if

lim A x

3
for all x EIR

We next determine the transfer functions H I(z), H 2 (z), and 11 3(z).

To do this, we first compute det(zI 3 -. A). It is given by

det(z A) =z3+ {(w1-3) + w h + I w h 2lz2

3- 1-1 23

+ M(32w,) -wh +jw h2 lz + (wl) (2.4)

Hence, by Cramer's rule, we obtain

1

zX(Z) 1 2
Y (Z) w v Z+wh-1 -wh -h

1 det(z1 3 -A) 2 2 2 2

w3  w h z 1.w 2 _1(25

zX(z) -{w 2 + I w h 2 + wh - 2w1)1+1 w h 
2 _wh 1 1

det(zI 3 - A) 13 2z+ 23 2 w,



Similarly, we obtain

Yz(Z) d X(z) (z- )(w2z + hw3  w2) (2.6)
Y2 (z) = (z3 - A) 2 

(2.)

Y Z -zX(z) (Z- 1) 2 w3  (2.7)
3 det(zl 3 -A) 3

Hence, the transfer functions HI(z), H2 (z), and H3 (z) as

defined in (2.3) can be written as

w (w 3 h 2+w 2h- 2wl)z 1 + (,wh - w2h + W

2l =. 1 ,21-2 +3 (2.8)
l+{(wl-3 w 2 h-1 2w 3w ,z + (w-1)z

w 2 + (hw3 - 2w2 )z- + (w2 - hw3)z-2

l{2(z) 23 . 1 2 , 1 2 -2 (2.9)
l+{(Wl3 ) +w h + z + {(3-2w) -w 2 h +-Iwh 2z +w O-z-}3

and

w3 - 2w3 z- 1 + w3 z 2

1+ {(W-3)+w 2 h+w 3 h 2 }z 1 + f(3-2w )-w h w1h }0 +(W-l)z
1 2 i31 2 7i 3h z +w-~

If we put the expressions (2.8), (2.9), and (2.10) back into (2.3),

multiply the denominator of Hj(z) to Yj(z), and take the inverse z-transforms

of each of the expressions for j 1 1, 2, and 3, we obtain the following

THEOREM 2.2. The digital filter given by (1.3) - (1.4) can be written as

three uncoupled recursive digital filters:

11I 2 1 2yp -{(W1- 3) +w 2 h + 3 r p -1- {(3-2w1) -w2 h+rh ly p-2

(Wl-1)yp_ + w Xp + 1. wh 2+wzh_- 2wl)Xp + (3h 2_-wh+W )Xp2,:.)

,- p-3 I2 , .L 2. - 2 3 2 1 1

Yp - -{(wl-3) +wh + 12"1a1 - (3-2wl- w h + 12n "ryp-

-(Wl- I)y; + w xp + (hw 3 2w2)xp_ + (w 2 -hw3)Xp_ (2.12)

7



and

, - 3)+w 2 h+ w 3  ly" _ {(3-2wi) w2 h h}y"Yp 12 3n Jp-, w nV3 p-2

-(w -l)y" +w - 2wx + w x
lp-3 W3p W3xp-I 3 p-2 ' (2.13)

where p = 0, 1, 2, ... with initial conditions y-, y'1 , and y"1 , and

where x = 0 for p < 0 and yp = y = y" = 0 for p < -.
p- p p

We now return to study the stability of the filter (1.3) - (1.4) a

little closer via the transfer functions HI(z), H 2 (z), and H3 (z).

From (2.4), putting z - 0, we see that det A - l-w I . This says that

A = 0 is an eigenvalue of A if and only if w, = 1. If w3 = 0, then

the transfer function H 3(z) is identically zero. On the other hand,

if w3 j 0, then the value z-1 = I is not a zero of Hi(z), while it

is a double zero of H3 (z) and at least a simple zero of H2 (z). Hence,

in this case, all the eigenvalues .' x2' x3  of A are essential in

the consideration of stability. More precisely, we have the following.

COROLLARY 2.1. Let w3 A 0. Then the digital filter (1.3) - (1.4) is

stable if and only if A : ax(1 , 21, I121) < 1.

3. A PARABOLIC SPLINE PREDICTOR-CORRECTOR DIGITAL FILTER

This filter is the special case w = 6 2  It was devised

by Shepherd [4] and has the following property: Set

8



v (t) y + y'(t-ph) +! - -p y+ (2-5)y;2+ ]x (t -ph)2 (3.1)P p p 2

and define v(t) on [0, m) by

v(t) = v (t) for ph < t < ph + h, p = 0, 1, 2, (.2)

Here, the input signal {x and the output response _ = [yp, Yy]T

satisfy the filter relationship (1.3) - (1.4) with w = [6, 2, 2 .
h 2

Using this relationship, it is easy to verify that the function v defined

by (3.2) is indeed a parabolic (or third order C ) spline on [0, -) with

knots at {0, h, 2h, ...}. Since v(ph) yp and v'(ph) = yp, the

spline function v together with its derivative v' interpolate the

output response [y p, y at the time t = ph, p = 0, 1, .... We

like to think of the input signal {x p} as a noisy measurement of {f(ph))

where f is a fairly smooth function to be reconstructed, and the output

y"~T Tresponse P ( [yp, y', Y" as an approximation to [f(ph), f'(ph), f"(ph)]
p pp

The approximation improves as 6 tends to 1 as can be seen in (3.3)

below. Hence, the spline function v can be considered as an approximation

to the function f which we wish to reconstruct from the noisy data {x ).
PI This particular filter is a one-parameter digital filter, parametrized

i 26 261T

by 6. In fact, if we put w = [6, , h2 in (1.3), then (1.3) - (1.4)
hh2

becomes

ip - (I -6y + (I- 6)hyp + _(1 - 6)h 2y +

p 2 p p+l'

26p+ = (I- -y 26 )y; + (1 -6)hy" + 16
ypl -7 + (1 h -p+ 1

Y 26, ._ 2 I + (1-6)yp + 1 (

+ 2 2 p(3.3)

9



and in matrix form, we have yp+ A p+x[6, h IT, with
p 6 h-p~ h2' wh

1 - 6 (I- 6)h 1(1 - 6)h
2

A - 26 1 - 26 (1- 6)h
6h

26 26.... 1-6

h2  h (3.4)

If we put 6 - 1, then y = Xp+l in (3.3). Hence, if 6 is close

to 1, the spline function v is indeed an "approximation" to the noisy

input data {x 1. However, a digital filter must be stable. Therefore, we
P

will discuss how close can 6 approach 1 so that the digital filter

defined by (3.3) remains stable. Since w3 = 26/h
2 0 0, we conclude from

Corollary 2.1 that the digital filter is stable if and only if

A6 := max(A 1 1, IX21, IA3 1) < 1 where X I 2, and X3 are the eigen-

values of A6 . If z is one of the three eigenvalues Ai X 2% an d A 3 ,

then by (2.4), z must satisfy the equation

z + (46 - 3)z2 + 3(1 - 6 )z - (1 - 6) 0 0. (3.5)

This equation does not contain the time increment h. Hence, A6  is

independent of h. For 6 - 1, the solutions of (3.5) are 0, 0, -1,

so that A1 = 1. Hence, the filter is not stable if 6 = 1. Let

6 :- 6 - 1 - , n - t2, ±3, ... (3.6)
n n

so that 6 I. The following tables indicate the stability of the filtern

for different values of n. Note that for n = 3, the roots of (3.5) are

10



, -I, so that A = 1 and the filter is unstable. Indeed, Steelman [5]

pointed out that this filter is stable if and only if 2/3 < 6 < 1 although

a proof is not given in (5]. These tables verify the truth of the statement.

Note that in Table 1A, for n = 3. 6 should be 2/3 instead of .667 and the

filter should be unstable as mentioned above.

TABLE 1A. STABILITY VS. MAXIMUM MODULUS OF THE EIGENVALUES OF A1

N DELTA = 1 - 1/N MAXIMAL MOD OF THE ROOT STABILITY

2 0.500 1.1228020 NO
3 0.667 0.9999995 ,NO
4 0.750 0.9158811 YES
5 0.800 0.8543339 YES
6 0.833 0.8067909 YES
7 0.857 0.7685731 YES
8 0.875 0.7369311 YES
9 0.889 0.7101327 YES

10 0.900 0.6870247 YES
11 0.909 0.6668116 YES
12 0.917 0.6489261 YES
13 0.923 0.6329178 YES
14 0.929 0.6184893 YES
15 0.933 0.6054116 YES
16 0.938 0.5934409 YES
17 0.941 0.5824399 YES
18 0.944 0.5722803 YES
19 0.947 0.5627684 YES
20 0.950 0.5539731 YES
21 0.952 0.5458879 YES
22 0.955 0.5380396 YES
23 0.957 0.5307868 YES
24 0.958 0.5239464 YES
25 0.960 0.5174800 YES
26 0.962 0.5113528 YES
27 0.963 0.5055345 YES

i 28 0.964 0.5000002 YES
29 0.966 0.5835004 YES
30 0.967 0.6170683 YES
31 0.968 0.6419301 YES
32 0.969 0.6621327 YES
33 0.970 0.6793841 YES
34 0.971 0.6942258 YES
35 0.971 0.7074718 YES
36 0.972 0.7193651 YES
37 0.973 0.7301440 YES

~11



TABLE 1A (Cont)

N DELTA = 1 - 1/N MAXIMAL MOD OF THE ROOT STABILITY

38 0.974 0.7399907 YES
39 0.974 0.7490339 YES
40 0.975 0.7573915 YES
41 0.976 0.7651453 YES
42 0.976 0.7723694 YES
43 0.977 0.7791147 YES
44 0.977 0.7854404 YES
45 0.978 0.7913876 YES
46 0.978 0.7969885 YES
47 0.979 0.8022742 YES
48 0.979 0.8072767 YES
48 0.980 0.8120122 YES
50 0.980 0.8165183 YES

TABLE lB. STABILITY VS. MAXIMUM MODULUS OF THE EIGENVALUES OF A1

N DELTA - I + 1N MAXIMAL MOD OF THE ROOTS STABILITY

2 1.500 3.4733100 NO
3 1.333 2.7423110 NO
4 1.250 2.3622870 NO
5 1.200 2.1263980 NO
6 1.167 1.9643850 NO
7 1.143 1.8455800 NO
8 1.125 1.7543650 NO
9 1.111 1.6819070 NO
10 1.100 1.6228290 NO
11 1.091 1.5736540 NO
12 1.083 1.5320190 NO
13 1.077 1.4962740 NO
14 1.071 1.4652290 NO
15 1.067 1.4379890 NO
16 1.063 1.4138780 NO
17 1.059 1.3923700 NO
18 1.056 1.3730690 NO
19 1.053 1.3556360 NO
20 1.050 1.3398040 NO
21 1.048 1.3253690 NO
22 1.045 1.3121390 NO
23 1.043 1.2999750 NO
24 1.042 1.2887430 NO
25 1.040 1.2783470 NO
26 1.038 1.2686840 NO
27 1.037 1.2596920 NO
28 1.036 1.2512910 NO
29 1.034 1.2434240 NO
30 1.033 1.2360490 NO

12



TABLE lB (Cont)

N DELTA - I + 1N MAXIMAL MOD OF THE ROOTS STABILITY

31 1.032 1.2291180 NO
32 1.031 1.2225870 NO
33 1.030 1.2164250 NO
34 1.029 1.2105970 NO
35 1.029 1.2050840 NO
36 1.028 1.1998570 NO
37 1.027 1.1948880 NO
38 1.026 1.1901720 NO
39 1.026 1.1856750 NO
40 1.025 1.1813930 NO
41 1.024 1.1773080 NO
42 1.024 1.1734020 NO
43 1.023 1.1696650 NO
44 1.023 1.1660900 NO
45 1.022 1.1626620 0
46 1.022 1.1593790 NO
47 1.021 1.1562260 NO
48 1.021 1.1531930 NO
49 1.020 1.1502780 NO
50 1.020 1.1474740 NO

NOTE: To give a more accurate pioture, we also use the values 6 = N150,
N= O, . .. , ZOO as in TabZe ZC.

TABLE IC. Stability VS. MAXIMUM MODULUS OF THE EIGENVALUES OF A1

N DELTA = N/50 MAXIMAL MOD OF THE ROOT STABILITY

0 0.0000 1.0040010 NO
1 0.0200 1.1561870 NO
2 0.0400 1.1873490 NO
3 0.0600 1.2053820 NO
4 0.0800 1.2170370 NO
5 0.1000 1.2247450 NO
6 0.1200 1.2296930 NO
7 0.1400 1.2325600 NO
8 0.1600 1.2337690 NO
9 0.1800 1.2336110 NO
10 0.2000 1.2325780 NO
11 0.2200 1.2299390 NO
12 0.2400 1.2266840 NO
13 0.2600 1.2226040 NO
14 0.2800 1.2177650 NO
15 0.3000 1.2122150 NO
16 0.3200 1.2060020 NO

13



TABLE IC (Cont)

DELTA =  50 MAXIMAL MOD OF THE ROOT STABILITY

17 0.3400 1.1991330 NO
18 0.3600 1.1916550 NO
19 0.3800 1.1835760 NO
20 0.4000 1.1749050 NO
21 0.4200 1.1656540 NO
22 0.4400 1.1558210 NO
23 0.4600 1.1454680 NO
24 0.4800 1.1344070 NO
25 0.5000 1.1227820 NO
26 0.5200 1.1105690 NO
27 0.5400 1.0977530 NO28 0.5600 1.0842650 NO29 0.5800 1.0700990 NO

30 0.6000 1.0552270 NO
31 0.6200 1.0396080 NO
32 0.6400 1.0232000 NO
33 0.6600 1.0059480 NO
34 0.6800 0.9877929 YES
35 0.7000 0.9686793 YES
36 0.7200 0.9484389 YES
37 0.7400 0.9270499 YES
38 0.7600 0.9043519 YES
39 0.7800 0.8801807 YES
40 0.8000 0.8543406 YES
41 0.8200 0.8265516 YES
42 0.8400 0.7964933 YES
43 0.8600 0.7638065 YES
44 0.8800 0.7275256 YES
45 0.9000 0.6870258 YES
46 0.9200 0.6407076 YES
47 0.9400 0.5859586 YES
48 0.9600 0.5176454 YES
49 0.9800 0.8165164 YES
50 1.0000 0.9999986 NO
51 1.0200 1.1474740 NO
52 1.0400 1.2783470 NO
53 1.0600 1.3992770 NO
54 1.0800 1.5134960 NO,
55 1.1000 1.6228290 NO
56 1.1200 1.7284450 NO
57 1.1400 1.8311170 NO
58 1.1600 1.9314120 NO
59 1.1800 2.0297310 NOI 60 1.2000 2.1263980 NO
61 1.2200 2.2216460 NO
62 1.2400 2.3156780 NO
63 1.2600 2.4086440 NO
64 1.2800 2.5006810 NO
65 1.3000 2.5918890 NO

14
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TABLE IC (Cont)

N DELTA =N/50 M4AXIMAL MOD OF THE ROOT STABILITY

66 1.3200 2.6823650 NO
67 1.3400 2.7721790 NOF68 1.3600 2.8614030 NO
69 .1.3800 2.9500870 NO
70 1.4000 3.0382880 NO
71 1.4200 3.1260400 NO
72 1.4400 3.2133900 NO
73 1.4600 3.3003620 NO
74 1.4800 3.3869950 NO
15 1.5000 3.4733050 NO
76 1.5200 3.5593280 NO
77 1.5400 3.6450760 NO
78 1.5600 3.7305680 NO
79 1.5800 3.8158280 'No
80 1.6000 3.9008630 NO
81 1.6200 3.9856960 NO
82 1.6400 4.0703320 NO
83 1.6600 4.1547900 NO
84 1.6800 4.2390740 NO
85 1.7000 4.3232030 NO
86 1.7200 4.4071750 NO
87 1.7400 4.4910080 NO
88 1.7600 4.5747040 NO
89 1.7800 4.6582750 NO
90 1.8000 11.1541500 NO
91 1.8200 4.7706570 NO
92 1.8400 4.9082810 NO
93 1.8600 4.9914050 NO
94 1.8800 5.0744260 NO
95 1.9000 4.6608080 NO
96 1.9200 5.2401970 NO
97 1.9400 5.3229540 NO
98 1.9600 5.4056270 NO
99 1.9800 5.4882250 NO
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The transfer functions H 6 (z) :[ H (z), H 2 (z), H3 (z)JT can also be

obtained by substituting w = [6, L6, L into (2.8) - (2.10). We have
hh2

H~z)= 6+ 6z -1

-2(Z) 3 (3.7)
1 + (46-3)z + 3(l- 6)z + (6-1)z

26(1 -

H(246)- 1) 2 -3 (3.8)H2( +(46 -3)z - + 3(1-6)z + (6-1)z -

annd
26(1 - )2

H3 (z) h (3.9)
1 + (46-3)z + 3(1-6)z2 + (6-)z

Also, by applying Theorem 2.2, we can uncouple the system (3.3) to yield:

yp M -( 4 6 - 3 )yp_ 1 - 3(1- y)Yp-2 + (I- 6)yp- 3 + 6x p + 4xp- 1 , (3.10)

y- -( 4 6 - 3 )y'_ 1 - 3 (l-)y;_ 2 + (1 - )yp_3 +- Vxp - -2 1 (3.11)

and

yp o -(4 6 -3)y" 1 - 3(l-6)y II- + (l-6)y"-3 + 2 6 _-46X-+ 26 (3.12)
P p-p2p3 kph p1+, 2  (3.12

for p - 0, 1, 2, ... with initial conditions x- ' = x2 ' 0 and

- - = and _ , [y y', yIt -T preassigned. Equations (3.10) -

(3.12) enable the user to plot the output response Y-p [yp, y', 911T in
p p

three different graphs, where the graph of {y p shows how the filter

smooths the input signal {x p1, p - 0, 1, .... It is also interesting

to study how close {y I is to {x ) when 6 is close to but different
p p

from 1. This can be done using the transfer function HI(z) given in
2

(3.7) as in the following. Since the filter is stable for < 6 < 1, we

always pick such values of 6. For minplicity, we set

16



C=1- 6>0

so that we have

1-Hz) H W C (2 z3 (3.13)
I + (1-4e)z- 1 + 3cz- 2 - :z 3

By applying Parseval's identity, we have

p 1 x-y 2 IX(eiW) - Y(e- )I2 dw
p p L

1 7t I1-H1(e)12x(w)2 d1 (3.14)

=7.--iw

where we have used the commn notation X(W = X(e- i ) and xl 0.

Hence, from (3.13), we have

xy Il(1 +w I~ I X(w)j dwlY12 I= p yp 4 l+(l_4c)eit+3Ee i2 e13w

(1 -cos)e 3  2
it) 4-2 1 2 + - _7)] 2 1X(w)I2 d, (3.5)

-7t (I + p Ccosw + 3Ccos2w - Ccos3w) E sinw + 3csin2w - csin))

where P5 '= 1 - 4

The last expression allows us to design Shepherd's parabolic spline

predictor-corrector digital filter in an optimal way. Depending on the

input spectrum X(w), one can pick c - 1-6 (numerically) such that 0 < C < 1/3

and such that the last expression above is minimized. In particular, if we

have faith on the data (x p, then we can pick c > 0 very close to zero.

This gives

17
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y12 + - 2 3; 'c2 cos W)3  jX(w)1 2 dw(

0 P p 7 - I + 2p Cos W + P 2

where .= - 4C as above., This integral can be used to design thLe

filter efficiently.

4. THE CL-8-y TRACKERS

The -a-y tracking equations discussed by Steelman [5] can be obtained

2 T
from (1.3) - (1.4) by putting w = [a, 8/h, Y/h2]T . This shows that each

a-$-y tracker is a third order predictor-corrector filter, and conversely

(e.g. the filter of section 3 is an ct-O-y tracker with 0 = y - 26). From

(2.8) - (2.10), the transfer functions of this filter can be found to he

a+ (-2a+ a+ .y)z- + ((- -Z

(n++ -1 +(a-+ 1  -2 (4.1)Z + (a+ + y1- 3) z + (-2a- 0+ y+ 3)z + (a-1)z

8 +(-2 + Y -1 0 Y -2

H 2(z) = h 1) + (h- h (4.2)
1 + (c+8+ -3)z- + (-2a-+y+3)z-2 +(a-1)z - 3

2
and -Y- 2 Y z- 1 + Y -2

h h h (43)
31 -1 23

1 + (a+ + "- 3)z + (-2at- O 4 -y+3)z-2 + (a-l)z-
2

These equations were also obtained in [5] in a different form. However,

using the formulation in (4.1) - (4.3), we can immediately uncouple the

filter as in section 2, yielding

= I 1

y -(a+a+ty - 3)yp. + (2c+0-'.-- 3)yp 2 - (a-1)y 3

ax -(2a - - 1)x + (a - + I )x 21(4.4)

18A -a-:



y; -(a+ y 3+-Y + (2a+ 8-1y 3 )y ;_2 - (C-I)y'-

+--2 O +  a 4sj~~ p- h p--).~ -) 2 '(4.5)

and

"= -(a+ + - 3)yp_1 + (2a+0- y-3)yp_ 2 - (a- 3)ypYp-

2h p2 p2 - h2 p

where p = 1, 2, ... , / 
= 0 if p < -1 and X.l x_2 0.

The case where a=1-0 3 , 8=3(1- I) 2 (J + ), and y = (1 0)

is called a "fading memory polynomial filter of degree 2" by Morrison

(cf. [5]). The uncoupled recursive filters (4.4) - (4.6) can be simplified

to be

30 - 2
Yp = 0yp1 302yp 2 + 0 Yp-3 + (1 - 03)x

2 2
- 30(1 - 0 )x 1  (1 - O)xp_ 2, (4.7)

Y' 3;y' - 302 y_ + 83Y_ +'_1(1-0) 2 (l+O)x
p p-+ p p-3 2h p

2 2 1 2- l - 0) (1 +20)x P-1 + -j( - °)2 (1 + 50) xp 2  (4.8)

and

Yp 36yp- 302y to + 0 3 + 1-0)3(x - 2x + xS - - -3 h 2  P P-1 p2 (49

for p =0, 1,... with yp ' y; " 0 for p < -1 and x = x 2  0.

19
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Note that the feed-back coefficients are particularly simple. The stability

of this filter is also particularly easy to check. In fact, it is stable if

and only if 11 < 1.

As another special case of the cA-8-y filter, let us set y = 0

This is the so-called a-a tracker, studied in WSMR by Gonzales in 1968

(cf. [2]). in this case, the factor 1 - z can be cancelled in each of

the expressions in (4.1), (4.2), and (4.3); and the transfer functions

of the CL-3 tracker simply become

Hl ~~z) - - (a-O)z -

H(z) (4.10)
1 + (a+8- 2)z - - (a - l)z - 2

83 - -l

1 (z) 
Ih h z

1 + (+8-2)z - l - (a-)z 2  (4.11)

and

H3 (z) 0. (4.12)

Since the denominator is a quadratic polynomial, we know immediately

that this ct-3 filter is stable if and only if A < 1 where
at ,3

(+J2 X -, __

L 1 22

Hence, it follows easily that for 8 > Mt + 8)/21 2 , we have A a < I

if and only if a > 0. That is, a stability condition for the a-B tracker

is:

20



> o, (a + 3)2 < 40 (4.14)

Another sufficient condition for stability of the c-i filters is

8 > 0, Q+ < 2. (4.15)

Ot course, the other sufficient condition for stability

a> O, 8 > 0, 2a + 1 < 4, (4.16)

* which also follows easily, was obtained by Gonzales (cf. 12,5]). Using an

inverse z-transform as in section 2, the a-B tracker equations can be

uncoupled into the form:

y p= -(a+$ 2)y _ + (Cg-l)y 1 2 - (a -$)x (4.17)

' = -(oL+0-2)y + (c-1)y2 + -(x x ) (4.18)
p p-1 p-2  h p p-1

and y" = 0, p = 0, 1, ... , where y = y; = 0 if p < -1 and x = 0

if p < 0. The condition (4.15) is very useful. It says that if the first

feed-back coefficient is nonnegative and $ > 0, then the a-3 fili:,r

(4.17) - (4.19) is always stable.

Finally, let us discuss McCool's Q filter [cf. 31, nauely:

60M2 (4.19)

ION + 33H + 23M- 6

0 and Y - 2 (4.20)
N
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where M is a natural number. The transfer ftinctioim nf thi. filrer can

obtained by substituting (4.20) into (4.1) - (4.3) and the uncoupled recr-

sive input-output relationship can be obtained from (4.4) - (4.6). We now

study the stability of the QD filter. Set

3 + 9
f(Z) =z + [ ,(M,+ , - 3lz- + M(-'W -2M+ ) + 31z + t4* 1)

with PIM 60/(0M3 + 33M2 + 23M 6). If Alt x2A and A3 are the

roots of f(z) = 0 and A = max(IA , IA2, IA. 1), then by Corollary

2.1, since w3 = Y/h 2 = 2P 0 0, we note that the QD digital filter is

stable if and only if A ' 1. The following table indicates the "
m

stability of this filter for M =, ±1, ±2, ±20

.1
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TABLE 2. STABILITY FOR McCOOL'S QD FILTER

M RO = PM MAXIMAL MOD OF THE ROOT STABILITY

-20 -0.0009 1.2024780 NO
-19 -0.0011 1.2146490 NO
-18 -0.0012 1.2282810 NO
-17 -0.0015 1.2437600 NO
-16 -0.0018 1.2615480 NO
-15 -0.0022 1.2820790 NO
-14 -0.0028 1.3061450 NO
-13 -0.0036 1.3346260 NO
-12 -0.0047 1.3689580 NO
-11 -0.0063 1.4111290 NO
-10 -0.0087 1.4641570 NO
-9 -0.0124 1.5328290 NO
-8 -0.0188 1.6252010 NO
-7 -0.0303 1.7560380 NO
-6 -0.0538 1.9554370 NO
-5 -0.1099 2.2953960 NO
-4 -0.2857 3.0000000 NO
-3 -1.2500 5.2570590 NO
-2*

-1 -10.0000 4.8910190 NO
0 -10.0000 13.5226500 NO
1 1.0000 0.9999990 YES
2 0.2381 0.5061458 YES
3 0.0952 0.6546553 YES
4 0.0478 0.7329382 YES
5 0.0275 0.7819132 YES
6 0.0172 0.8155725 YES
7 0.0115 0.8401833 YES
8 0.0081 0.8589627 YES
9 0.0059 0.8737922 YES

10 0.0044 0.8857723 YES
11 0.0034 0.8956649 YES
12 0.0027 0.9040021 YES
13 0.0022 0.9110962 YES
14 0.0018 0.9172200 YES
15 0.0014 0.9225416 YES
16 0.0012 0.9272274 YES
17 0.0010 0.9313622 YES
18 0.0009 0.9350671 YES
19 0.0007 0.9383648 YES
20 0.0006 0.9413764 YES

Coefficients of the polynomials are undefined; division by zero.

23

k 1 ...... ____



REFERENCES

1. C. K. Chul, "On a Class of Linear Predictor-Corrector Digital Filters",
Final Report, US Army, White Sands Missile Range, New Mexico, September 1979.

2. R. L. Gonzales, "Performance Models for Range and Angel Trackers Appli-
cable to Phased Array Instrumentation Radar," Electronics Division Technical
Memorandum 68-2, Instrumentation Directorate, White Sands Missile Range, New
Mexico, June 1968.

3. W. A. McCool, "Zero and First Order QD Filters," Technical Report No. 15,
Analysis and Computation Directorate, National Range Operations, White Sands
Missile Range, New Mexico, March 1970, pp. 1 - 2.

4. W. L. Shepherd, "A Class of Third Order Linear Predictor-Corrector Digi-
tal Filters," U. S. Army White Sands Missile Range Internal Notes, White
Sands Missile Range, New Mexico, June 1979.

5. J. E. Steelman, "Frequency of a c-o-y Trackers," Technical Report STEWS-
ID-78-3, Instrumentation Directorate, US Army White Sands Missile Range, New
Mexico, September 1978.

* , I 25- -



DISTRIBUTION LIST

Number
ofOrganization Copies

STEWS-NR-A 1

CCNC-TWS 2

STEWS-NR-D 4

STEWS-PL 1

STEWS-PT-AL 3

STEWS-QA 1

STEWS- ID 1

STEWS-ID-D 1

STEWS- ID-O 1

STEWS-ID-E 1

STEWS- ID-P 3

STEWS- ID-T I

STEWS-PT-AM 1

Commander
US Army Test and Evaluation CommandATTN: DRSTE-AD-I
Aberdeen Proving Ground, Maryland 21005 2

Commander
Army Materiel Development and Readiness Command
ATTN: DRCAD-P
5001 Eisenhower Avenue
Alexandria, Virginia 22333 1

27 
. . . .



DISTRIBUTION LIST

Number
of

Organization Copies

Director of Research and Development
Headquarters, US Air Force
Washington, DC 20315 1

Director
US Naval Research Laboratory
Department of the Navy
ATTN: Code 463
Washington, DC 20390

Commander
Air Force Cambridge Research Center
L. G. Hanscom Field
ATTN: AFCS
Bedford, Massachusetts 01731

Commander
US Naval Ordnance Test Station
ATTN: Technical Library
China Lake, California 93555 2

Di rector
National Aeronautics and Space Administration
ATTN: Technical Library
Goddard Space Flight Center
Greenbelt, Maryland 20771 2

AFATL/DLODL
Eglin Air Force Base
Florida 32542 1

Commander
Pacific Missile Test Center
Point Mugu, California 93041 1

Commanding Officer
Naval Air Missile Test Center
Point Mugu, California 93041 2

28



DISTRIBUTION LIST

Number
ofOrganization Copies

Office of the Chief
Research and Development
Department of the Army
Washington, DC 20310 3

Commanding Officer
US Army Electronics Command
Meteorological Support Activity
ATTN: Technical Library

, Fort Huachuca, Arizona 85613 2

Commanding Officer

US Army Ballistics Research Laboratories
Aberdeen Proving Ground, Maryland 21005 1

Commanding Officer
US Army Research Office
P. 0. Box 12211
Research Triangle Park, North Carolina 27709 1

Commander
Atlantic Missile Range
Patrick Air Force Base, Florida 32925 1

Commanding Officer
US Army Aviation Test Activity
Edwards Air Force Base, California 93523 1

Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314 12

US Army Materiel Systems Analysis Agency
ATTN: DRXSY-MP
Aberdeen Proving Ground, Maryland 21005 1

29

s.in'


